Feasibility study green hydrogen Upper Rhine Innovation Region

Barbara Koch

Barbara.Koch@sustainability-upperrhine.info

Égalité

Fraternité

Die Bundesregierung

eucor

SIORAGE

Hydrogen demand

Hydrogen Europe 2020 study

Hydrogen demand in industry 2030

Hydrogen 2021 meta study

Fraunhofer Institute for Systems and Innovation Research ISI

Fraunhofer Institute for Solar Energy Systems ISE

Fraunhofer Research Institution for Energy Infrastructure and Geothermal Energy IEG

Hydrogen and synthesis product demands (PtX)

Hydrogen demand - Upper Rhine

Study H₂ - so Fraunhofer ISE Vogelstätter et al. 2022

218 000 t/y for Switzerland and France in the Upper Rhine when switching from natural gas to hydrogen

Upper Rhine Germany (today) 5064 t/y H2 Demand for processes 4269 t/y H2 for heat generation Demand approx. 20 000t/y

Demand 'Chalampe cluster' approx. 60 000 t/y Demand BASF approx. 10 000 t/y

Generating 100 000 t of CO₂ today

Hydrogen demand - Upper Rhine cluster

Cluster	Ortenau [t/a]	Breisgau [t/a]	Dreiländereck [t/a]	Waldshut [t/a]	Σ [t/a]	Cluster
PKW LnF SnF FFz Busse	204 57 810 106 237	188 368 6.268 315 407	79 59 541 209 0	107 8 903 94 240	578 492 8.522 724 884	Ortenau VII C
Mobilität	1.414	7.546	888	1.352	11.200	Cluster Breisgau
Prozesse	0	0.1	5.000	0.8	5.001	
Prozesswärme	1.320	604	0	2.616	4.540	
Summe	2.734	8.150	5.888	3.969	20.741	Cluster Dreiländereck

Study H₂ - so Fraunhofer ISE Vogelstätter et al. 2022

Hydrogen demand

Chemical industry

Glass industry

Metal and steel production

Anzahl der Unternehmen 2005

	Anzahl Unternehmen	Anteil Unternehmen mit weniger als 50 Beschäftigten
Elsass*	91.973	97,7%
Südpfalz	13.687	98,7%
Baden	105.734	98,1%
Nordwestschweiz	72.988	98,3%
Region Oberrhein	284.382	98,1%
* Betriebe Quelle: Statistische Ämter		

Geological potential for H₂ storage

- salt caverns in the salt diapirs of the southern ORG (Bad Krozinge-Colmar-Wittenheim).
- salt caverns in the salt diapirs in the southern ORG (Wittelsheim-Staffelfelden).
- pore storage facilities in Tertiary sandstones (marginal areas of the ORG, also in the northern OR (see existing gas storages)
- pore storages in the permotriassic sandstones of the ORG

Geological storage capacity 11 TWh on the Upper Rhine.

Europes Transmission Gaspipes

Energy post by Karel Beckmann 2015

- Regional production
- Transport North South/South North
- Transport in the gas distribution network (up to 20% possible)
- Big gas pipes can be used for transport but compression stations needed
- Structure of the hydrogen "backbone"

Gas utilisation versus hydrogen cycle

Energy production:

Wind: Black Forest and Vosges PV: gravel pond, noise protection, roofs, BM and Agri-PV Geothermal energy: CHP near the surface (deep geothermal energy) Biomass: agricultural, biowaste and (residual) wood Hydropower: Rhine

Electrolysers: utilisation of waste heat and oxygen

Energy storage: caverns, pipe systems, container systems, battery storage systems

CHP for better demand adjustment

- Burner technologies
- Calibration technologies
- Gas distribution networks must be upgraded for hydrogen

Hydrogen – Infrastructure

Koch 2022

Green hydrogen - supply

Green hydrogen – timeline for pilots

Pilot 1: Production

After 2 years	After 3 years			
Large scale production electrolyser	Open test bed for innovative electrolyser designs	Floating PV installations		
TRL: 9	TRL: 5 - 8	TRL: 8 - 9		

Years after the beginning of the project

TRL: Technological Readiness Level of the technology addressed in the planned pilot project (1 = minimal; 9 = mature)

Pilot 2: Virtuel pipieline

After 2 years	After 3 years	After 4 years		
Enhanced pipeline system for storage and transport	Container-based bunkering facility	FC-driven container vessel	Hydrogen liquefier and LH ₂ storage	
TRL: 8 - 9	TRL: 7 - 9	TRL: 6 - 8	TRL: 7 - 9	

per Rhine Clu

eucor

opean Campu

Years after the beginning of the project

TRL: Technological Readiness Level of the technology addressed in the planned pilot project (1 = minimal; 9 = mature)

Pilot 3: Heavy Traffic

- Years after the beginning of the project
- TRL: Technological Readiness Level of the technology addressed in the planned pilot project (1 = minimal; 9 = mature)

Pilot 4: Biomass based hydrogen production

TRL: Technological Readiness Level of the technology addressed in the planned pilot project (1 = minimal; 9 = mature)

System Interdependence

euco

Pilot 1 Project H2_ "Large scale industry supply with green hydrogen

Aims:

- Identify together with industries the location and power supply
- > Develop a testbed for electrolysers (H2 Gigafactory for electrolysers in Aspach-Michelbach)
- Testbed for grid integration of electrolyser
- > Develop ideas for LH2 hydrogen transport connected to other opportunities in using the low temperature
- Develop design plan importing green energy via green ammonia could be another option.

Example

